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Abstract—Online lot sizing for perishable materials in an uncertain environment is a fundamental problem for inventory planning and
has been studied in the past several decades. In this paper, we study a novel setting of the lot sizing problem, considering perishable
materials, multiple suppliers, uncertain demands and lead time (LS-PMU), which captures the inventory planning task in real life better
than existing lot sizing problems. We present theoretical results of the best possible competitive ratio an online algorithm can achieve
for LS-PMU problem. We then develop a reinforcement learning based algorithm called RL4LS to intelligently choose the supplier and
decide the order quantity in each time period. We conduct extensive experiments on both real and synthetic datasets to verify that
RL4LS outperforms existing algorithms in terms of effectiveness and efficiency, e.g., RL4LS improves the effectiveness by 44% and
runs two orders of magnitude faster than the state-of-the-art algorithm IBFA.
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1 INTRODUCTION

Supply chain management is to manage the flow of raw
materials, semi-finished and finished products. During the
process of supply chain management, one essential task
is inventory planning, which involves a critical problem
called lot sizing [1]. Specifically, in a lot sizing problem,
a decision-maker needs to determine in each period the
orders to be placed and their quantities, considering the
lead time (which means the time needed for producing
and transporting the material from the supplier to the
inventory), associated costs, products’ quality, to minimize
the total costs. Depending on the application scenarios, dif-
ferent assumptions, objectives, and constraints are adopted
[2]. Most existing works [3], [4], [5], [6] assume a single-
supplier scenario, where there is only one supplier available
across different periods. Some recent works [7], [8] target a
multiple-supplier scenario. Specifically, [7], [8] assume that
the decision-maker can order materials from multiple sup-
pliers in each single period. We observe that this multiple-
supplier scenario does not capture the practice that well. For
example, for many enterprises, such as ST Logistics, Alcon,
LSH Electrical Engineering, they always view the order in a
period as an integrated one and place it to the most suitable
supplier, but not multiple ones for the following reasons.

First of all, it would save the ordering costs. Most sup-
pliers charge a fixed cost, i.e., a setup cost, in addition to the
costs of purchasing the materials, which usually cover the
expenses incurred in production and shipment. Therefore,
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when we distribute the orders to multiple suppliers in a
period, we may not only pay more money for buying these
materials (since different suppliers charge different unit
costs), but also have a higher expenditure for the produc-
tion and transportation from different suppliers. Second, it
would introduce less work of coordination when receiving
orders. Imagine that we order from multiple suppliers in
every period. Then for some periods, we may need to handle
the situation that a number of receiving orders from differ-
ent suppliers arrive at the inventory simultaneously, which
makes the coordination a tough job. Third, it would make it
convenient for after-sale services. When the customers want
to return or exchange their products due to some reasons, it
would be easier to contact the supplier.

In this paper, we propose a new problem, called the
lot sizing with perishable materials, multiple suppliers and
uncertain demands and lead time (LS-PMU). We adopt the
setting that one only places the order of the material to at
most one supplier in each planning period, which is differ-
ent from that adopted in existing studies [7], [8]. Consider
a planning scenario of T periods with a set of suppliers,
denoted by S. Existing studies usually adopt a vector-based
solution, which represents the policy as a |S|-dimensional
vector in each planning period [7], [8], but they apply
different search strategies. Specifically, GA [7] applies the
genetic algorithm, where a possible solution is encoded as a
chromosome-like data structure, represented by a (|S|×T )-
dimensional vector. IBFA [8] applies an improved bacteria
foraging algorithm, where the raw solutions, intermediate
results and the global optimum are all represented by
(|S| × T )-dimensional vectors. These solutions, however,
cannot handle our task well since we do not allow to place
orders to multiple suppliers in a single period. In addition,
[7], [8] are both based on the nature-inspired heuristics, and
it would take a long time to converge.

To address the LS-PMU problem effectively and effi-



ciently at the same time, we consider the planning process of
LS-PMU problem as a sequential decision making process.
Then, we model the sequential decision making process as
a Markov Decision Process (MDP) [9]. We carefully design
the MDP including states, actions and rewards such that
(1) the states capture the critical information and cheap to
compute; (2) the hybrid actions capture the decision process
of LS-PMU (i.e., first choosing a supplier, which is captured
by a discrete value, and then deciding an order quantity,
which is a continous value); and (3) the rewards are well
aligned with the goal of the problem. Finally, we adopt a re-
inforcement learning (RL) algorithm, namely parameterized
Deep-Q Network (P-DQN) [10], to learn the policy.

In summary, the main contributions of this paper are
as follows. We propose the LS-PMU problem, in which we
place an order to at most one supplier in each period, which
is more aligned with real logistics applications. We present
theoretical results on the competitive ratio of any given
algorithm for LS-PMU problem, which could reflect the best
possible quality guarantee for the algorithm. We propose a
RL-based algorithm RL4LS for the LS-PMU problem. Com-
pared with existing methods, our algorithm can capture
more information of the inventory status and as a result,
can generate the policies with smaller costs. We conduct
extensive experiments on both real and synthetic datasets
to verify that RL4LS outperforms all (resp. most) existing
algorithms in terms of effectiveness (resp. efficiency). For
example, RL4LS improves the effectiveness by 44% and
simultaneously runs 226 times faster on the real dataset,
compared with the state-of-the-art IBFA.

2 RELATED WORK

Lot-sizing Problems. Lot sizing problems can be classified
based on several criteria. Among them, [11], [12], [13], [14]
target non-perishable materials. For perishable materials,
earlier studies on the lot-sizing problem assume an offline
setting, where the demands in each period are known in
advance [15], [16], [17], [18]. Recently, some studies [3], [4],
[5], [6], [19], [20], [21], [22] consider the online setting. How-
ever, [19], [20], [21], [22] target the materials whose quality
deteriorates continuously over time, i.e., N(t) = N(0)·e−λt,
where N(0) and N(t) are the initial quality and the quality
at time t, respectively. [3], [4], [5], [6] target the materials that
have a fixed expiry date, but they assume a single supplier.
The most related studies are [7], [8] since they also target
the materials that have a fixed expiry date with multiple
suppliers. Nevertheless, as explained in Section 1, these
studies allow to place orders to more than one suppliers
in a single period, which do not capture some real scenarios
well. Interested readers are referred to a survey paper [2] for
more details of other types of lot-sizing problems.
Reinforcement Learning for Inventory Planning. Some
existing studies [5], [13], [14], [23] have tried to solve the
inventory planning problem using reinforcement learning,
they differ from our RL4LS algorithm in various aspects: (1)
[13], [14] allow to place orders to more than one suppliers in
a single period, and they focus on non-perishable materials;
(2) [5] targets single-supplier setting and assumes zero or
constant lead time; (3) [23] targets a multiple-echelon sce-
nario that multiple inventories cooperate to minimize the
total costs or maximize the revenue.

3 PROBLEM STATEMENT

3.1 Variables
Consider a horizon of time periods 1, 2, ..., T , where each
corresponds to a unit of time such as a month. Let S be a
set of suppliers, from which we can order materials. During
each period, the materials may be involved in some events,
e.g., it is ordered from some supplier, delivered to the
inventory, sold to customers, and disposed. The following
variables represent the quantities involved in these events.

We denote by o(i, j) and l(i, j) the quantity and lead
time of the material ordered from supplier j ∈ S at the
beginning of period i ∈ [1, T ], respectively. The lead time
l(i, j) is a random variable, meaning the amount of time
it takes for the material that is ordered at the beginning of
period i to be delivered from the supplier j to the inventory.
Note that the order o(i, j) will be received at i′ = i+ l(i, j).

We denote by v(i) the quantity of the material stored in
the inventory at the beginning of period i. We further define
v(i, r) to be the quantity of material which (1) is stored in
the inventory at the beginning of period i and (2) has the
remaining life time r ∈ [1, L], where L is the maximum life
time of the material. Note that we have v(i) =

∑L
r=1 v(i, r).

We assume the initial inventory level is zero, i.e., v(1) = 0.
We denote by a(i) the quantity of the material that

arrives at the inventory at the beginning of period i. We
assume no material expires before it arrives at the inventory,
which is well aligned with the practice. This quantity de-
pends on how the material is ordered and delivered before
period i, i.e., o(i′, j) and l(i′, j) for i′ ≤ i and j ∈ S. We also
define a(i, r) to be the quantity of material which (1) arrives
the inventory at period i and (2) has the remaining life time
r ∈ [1, L]. Similarly we have a(i) =

∑L
r=1 a(i, r).

We denote by d(i) the quantity of the material that is
demanded during period i. The quantities for the future
periods are unknown. We denote by s(i) the quantity of
the material that is in shortage during period i. Note that
s(i) = {d(i) − v(i) − a(i)}+, where {x}+ = max{0, x}.
Here, we target the lost-sales scenario, where the unfilled
demands would be dropped. We denote by u(i) the quantity
of the material that is used to serve the demands during
period i. Note that u(i) = min{d(i), v(i) + a(i)}. We denote
by p(i) the quantity of the material that is disposed at the
end of period i. This quantity depends on the quantity
of material that will expire at the end of this period, i.e.,
v(i, 1) + a(i, 1), and the demand during this period, i.e.,
d(i). Specifically, p(i) = {v(i, 1)+ a(i, 1)− d(i)}+. Here, we
adopt the principle that material with shorter remaining life
time is used to serve the demands first.

Note that the quantity of the material at the beginning
of the next time period i + 1, i.e., v(i + 1), depends on
v(i) (existing), a(i) (newly arrived), u(i) (sold), and p(i)
(disposed). Specifically, we have the following equation.

v(i+ 1) = v(i) + a(i)− u(i)− p(i). (1)

An illustration of the above events is shown in Figure 1.

Fig. 1. An illustration of the events between two adjacent time periods.



3.2 Costs
Due to the life time of the material, various costs are in-
curred, including ordering cost, holding cost, disposal cost
and shortage cost for each period i. We denote these costs
by Co(i), Ch(i), Cd(i), and Cs(i), respectively. Let co(j),
ch, cd, and cs be the unit cost of ordering from supplier j,
holding, disposing, and having a shortage of the material,
respectively. Let cb(j) be the fixed setup cost that would be
incurred when a certain quantity of material is ordered from
the supplier j. Then, the costs can be computed as follows.

Co(i) =
∑

j∈S
(co(j) · o(i, j) + cb(j) · I(o(i, j)))

Ch(i) = ch · {v(i) + a(i)− d(i)}+

Cd(i) = cd · {v(i, 1) + a(i, 1)− d(i)}+

Cs(i) = cs · {d(i)− v(i)− a(i)}+

(2)

where I(x) is an indicator function, which is equal to 1 if
x > 0 and 0 otherwise. Then, the cost for time period i,
which we denote by C(i), can be computed as follows.

C(i) = Co(i) + Ch(i) + Cd(i) + Cs(i) (3)

3.3 Problem Definition
In this paper, we study the problem of lot sizing with
perishable materials, multiple suppliers, and uncertain de-
mands and lead time (LS-PMU). Specifically, the problem is
to decide for each time period a supplier and a quantity for
ordering a material in an online fashion so as to minimize
the total cost over all time periods subject to the inventory
capacity constraint and the principle that during each time
period, we order the material from at most one supplier.
Mathematically, the problem could be formalized as follows.

min
o(i,j),i∈[1,T ],j∈S

∑T

i=1
C(i) s.t. (4)

v(i) ≤ V for each i ∈ [1, T ] (5)∑
j∈S

I(o(i, j)) ≤ 1 for each i ∈ [1, T ] (6)

where V is the capacity for the material and I(x) is an indi-
cator function, which is equal to 1 if x > 0 and 0 otherwise.
In addition, we summarize settings of our problem. (1) We
target an online planning setting; (2) we target the lost-sale
scenario, where the customers would not wait for the stock
to be replenished and drop the unfilled demands; (3) the
planning is in a periodic-review manner.

3.4 Competitive Ratio Analysis
In the following, we present a competitive ratio boundary
that an algorithm is able to achieve for the LS-PMU problem.

Theorem 1. Suppose that minj∈S co(j) ≤ cs (since otherwise
the competitive ratio would be exactly 1). Given an algorithm
A ∈ A for the LS-PMU problem with decision variables o(i, j)
for all i and j. Define o(i) =

∑
j∈S o(i, j) and

cr(i) = max

(
f(o(i))

f(0)
,

cs
minj∈S{co(j)}

)
(7)

where f(x) = minj∈S{(ch + cd + co(j)) · x+ cb(j)}, then the
competitive ratio of algorithm A is at least mini cr(i).

We provide the proof of Theorem 1 and an offline opti-
mal algorithm A∗ in the technical report [24]. With A∗, we
can compute the empirical competitive ratio of an algorithm.

4 METHODOLOGY

We observe that the planning task in the LS-PMU problem
corresponds to a sequential decision process, i.e., it makes
decisions on (1) choosing a supplier and (2) determining the
order quantity for placing an order on the chosen supplier
in each period sequentially. Therefore, we propose to use RL
to help with the decision making process. Specifically, we
model the LS-PMU problem as an MDP, adopt an existing
deep RL method, P-DQN [10], to learn an optimal policy
on the MDP, and then develop an algorithm called RL4LS,
which uses the learned policy to solve the LS-PMU problem.

4.1 The LS-PMU Problem Modeled as an MDP

We model the LS-PMU problem as an MDP, which mainly
consists of states, actions and rewards as defined as follows.

States. We denote the state in time period i by si. Intuitively,
a state should capture essential information of the inventory
status for determining a supplier and the order quantity in a
period. We identify the following three types of information:
(1) the inventory level, (2) open orders, which have been
ordered but not received by the inventory and (3) the
prediction of the lead time and demands.

To capture the first type of information of the inventory
status at the beginning of period i, we take the values v(i, r)
for r ∈ [1, L] and concatenate them together, denoted by svi ,

svi = [v(i, 1), · · · , v(i, r), · · · v(i, L)] (8)

The rationale is that svi provides an overview of the materi-
als that can be directly consumed in the current time period.

To capture the second type of information of the inven-
tory status, we maintain a list of open orders O. Based on the
assumptions that (1) no material expires before they arrive
at the inventory and (2) we order the material from at most
one supplier in each period, there would be at most L − 1
open orders at the beginning of the time period i. Let b(k) be
a binary value, where b(k) = 1 indicates the order placed at
time period k < i is an open order and b(k) = 0 otherwise.
Then, the open order information soi is defined as follows,

soi = [b(i−L+ 1) · o(i−L+ 1), · · · , b(i− 1) · o(i− 1)] (9)

where o(·) =
∑

j∈S o(·, j). The rationale is that soi captures
the quantity of materials that would arrive at the inventory
in the following time periods, which is important for plan-
ning the future orders. Note that for those r ∈ [1, L−1] with
i− r ≤ 0, we assume the open orders are equal to 0.

To capture the third type of information of the inven-
tory status, we make predictions on the lead time and the
demand. The rationales are as follow. Lead time prediction
of a supplier j provides the information of how long it will
take to deliver the materials if we place the order to j, which
would affect the decision afterwards. Demand prediction
provides the information of how many materials we need to
meet in the following period, which would further affect the
choice of the supplier since if there is a surge demand, we
need to choose the supplier with a short lead time. Formally,
the predicted lead times, denoted by l̂(i, j) for j ∈ S, the
predicted demand, denoted by d̂(i), and corresponding state
representations sli and sdi are defined as follows.

sli = [l̂(i, 1), · · · , l̂(i, |S|)], sdi = [d̂(i)] (10)



We try different methods for lead time and demand pre-
dictions, e.g., ARIMA [25], LSTM [26] and sampling from
known distribution. We compare the results and report them
in the experiments. In summary, we define si as a (2L+|S|)-
dimension vector, which captures the inventory level infor-
mation, open order information and the predictions,

si = [svi , s
o
i , s

l
i, s

d
i ] ∈ R2L+|S| (11)

Actions. We denote the action at time period i by ai. Recall
that at the beginning of the time period i, the state is si and
we need to decide (1) a supplier and (2) the order quantity.
Therefore, we define ai as follows.

ai = [j, q] (j ∈ S, q > 0) (12)

which means we place an order to the supplier j in which
the quantity of the material is q. We note that the actions
defined above are hybrid ones, which involve both a discrete
value j (which indicates a supplier) and a continuous value
q (which means the order quantity).
Rewards. Consider that we take action ai at a state si and
then we arrive at a new state si+1. We define the reward,
denoted by Ri, associated with this transition as follows.

Ri = −C(i) (13)

The intuition is if a smaller cost is incurred in period i,
the action ai would be associated with a larger reward. It
is worthy of mentioning that with the reward defined as
above, the objective of the MDP, which is to maximize the
accumulative rewards, would be equivalent to that of the
LS-PMU problem, which is to minimize the costs over all
periods. To see this, suppose that we go through a sequence
of states s1, s2, · · · , sT+1 and correspondingly we receive a
sequence of rewards R1, R2, · · · , RT . Then, the accumula-
tive rewards without being discounted can be computed by

T∑
i=1

Ri = −
T∑

i=1

C(i). (14)

4.2 Policy Learning on the MDP
In our MDP, the states are high dimensional vectors and
the actions are in a hybrid domain. Therefore, we adopt P-
DQN [10] to solve our MDP as it targets the same setting.
P-DQN involves a Q network and a policy network µ. The
Q network, parameterized by ω, is to estimate the action-
value function, and the policy network µ, parameterized by
θ, is to map the state to an order quantity given a supplier
in a deterministic way. The µ network given a supplier j is
denoted by µj . Thus, given a state si in period i, we can
select a proper action by first choosing a supplier j∗ based
on the Q network, and then calculating the order quantity
q∗ based on the µ networks, i.e.,

j∗ = argmax
j∈S

Q(si, j, µj(si; θ);ω), q∗ = µj∗(si; θ)

(15)
We then take the action ai = [j∗, q∗] in period i. For the
training process, we initialize two main networks Q(·;ω)
and µ(·; θ), which are used for selecting actions, and two
target networks Q′(·;ω′) and µ′(·; θ′), which are used for
calculating the losses for training the main networks. During
the training, we adopt the ϵ-greedy method, which takes
a = [j∗, q∗] with probability (1 − ϵ) and a = [j, q] other

than [j∗, q∗] with probability ϵ, to balance exploration and
exploitation. We also maintain a replay buffer, containing
the latest transitions. The training process is as follows.
Consider N experiences sampled uniformly from the buffer,
i.e., (si, ai, Ri, si+1) for i ∈ [1, N ]. For the Q network, we
compute the loss by

L(ω) =
1

N

N∑
i=1

(yi −Q(si, ai;ω))
2, (16)

where yi = Ri + γ · maxj′∈S Q′(si+1, j
′, µ′

j′(si+1; θ
′);ω′).

For the µ network, we compute the loss by

L(θ) = − 1

N

N∑
i=1

|S|∑
j=1

Q(si, j, µj(si; θ);ω) (17)

Finally, we update θ and ω by gradient descent.

4.3 The RL4LS Algorithm

We put the pseudo-codes of RL4LS algorithm in the tech-
nical report [24]. We briefly introduce the main idea. At
each time period i, RL4LS first observes the inventory status
based on the three types of information, and constructs a
state si. Then it takes an action ai = [j∗, o∗] based on the
learned policy, i.e., Eq. (15). The plan for the time period i
will be o(i, j∗) = q∗ and o(i, j) = 0 for other supplier j.
Finally, we observe the costs and proceed to the next period.

Time complexity. The time complexity of the RL4LS al-
gorithm is O(T (L + |S|)). The cost mainly comes from the
computation of the states. Given a state s = [sv, so, sl, sd],
we analyze the costs as follows. For sv and so, they both
take O(L) time to construct. For sl and sd, they can be
calculated in O(|S|) and O(1) time, respectively. Therefore,
the complexity of the RL4LS is O(T (L+ |S|)).

5 EXPERIMENT

5.1 Experiment Setup

Datasets. The real dataset is collected by Alcon Singapore
Manufacturing Pte. Ltd. There are 76 different materials, and
for each material, there are 76 different suppliers. Different
materials have different demand distributions, maximum
life time and associated costs. And different suppliers also
have different lead time distributions. The planning horizon
is one year. Since orders are placed on a monthly basis,
we set T = 12. We also generate some synthetic datasets
by following the existing study [27], which considers a
sequence T of 12 periods and use different settings of |S| for
generating suppliers. For each setting, we further generate
the same number of materials. Details of generating the
suppliers and materials are referred to [27].

Baselines and Metrics. We compare our proposed model
with four existing algorithms, namely IBFA [8], GA [7],
PG4LS [13] and QL4LS [5], in terms of the total cost and
the running time. IBFA, GA and PG4LS are all vector-based
solutions, i.e., they allow to place orders to more than one
supplier in a single period. The policy for a period i can be
represented by a vector [p1, p2, · · · , p|S|]. To adapt them to
our problem, we first set the order quantity to qi =

∑|S|
j=1 pj ,

and then we choose the supplier which has the minimum
ordering cost, i.e., ji = argminj∈S{co(j) · qi + cb(j)}, so as



TABLE 1
Running time (seconds) on real dataset.

Alg. RL4LS IBFA QL4LS PG4LS GA
Time (s) 2.39 542.27 1.78 2.77 843.74

to align with the objective of LS-PMU. QL4LS is the state-of-
the-art RL based algorithm for the perishable material under
the single-supplier setting. The policy for a period is a real
number representing the order quantity, say qi. To adapt
QL4LS to our problem, we first set the order quantity to qi,
and then we choose the supplier which generates the least
ordering costs, i.e., ji = argminj∈S{co(j) · qi + cb(j)}.

Model Training and Hyperparameter Setting. They can be
found in the technical report [24]. Our codes can be found
via https://github.com/wangkaixin219/RL4LS.

5.2 Experiment Results
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Fig. 2. Results on real dataset.

(1) Results on Real Dataset. The average time of training
a satisfactory model is around 1.4 hours and the learning
curve for RL4LS on real dataset is presented in Figure 2(a).
We can see that the total cost gradually decreases over the
training process, and the algorithm converges after 18,000
episodes. Consider the total costs (Figure 2(b)), RL4LS out-
performs all existing algorithms. For all but GA, the costs
mainly come from the holding costs and ordering costs,
which are almost 80% of the total costs. When we order the
materials more than the quantity we really need, it incurs
higher purchasing costs and holding costs. For GA, the cost
mainly comes from the shortage costs since it orders much
fewer materials but they cannot meet the demands. The
possible reasons are (1) GA gradually stucks at the local
optimum and (2) the unit cost of having a shortage of the
material, i.e., cs, is around 7-9 times of that of purchasing,
i.e., ck(j). Consider the efficiency (Table 1). QL4LS runs the
fastest, which could be explained by that (1) GA and IBFA
need a large amount of time for trial-and-error and (2) the
state and the action are both cheaper to compute compared
with RL4LS and PG4LS. In addition, RL4LS runs the second
fast, only slightly slower than QL4LS.

(2) Ablation Study on Prediction Models (Real Dataset).
Recall that in Section 4.1, we make the predictions on the
lead time and the demand in our state definition. We choose
three models, namely ARIMA [25], LSTM [26] and Gaussian
Sampling. For ARIMA(p, d, q), we set p = 1, d = 0, q = 1
for both predictions. For the demand prediction (resp. lead
time prediction of a supplier) using LSTM, the input is a 12-
dimensional (resp. 3-dimensional) vector, which consists of
the demand history data of the last 12 periods (resp. the last
3 lead time history data of the same supplier). For Gaussian
Sampling, we assume that the demand and lead time both
follow some Gaussian distributions. We denote the variants
by RL4LS-N/A/L/S-D/L, where N (A, L or S) represents we
use a null (ARIMA, LSTM or Sampling) prediction model,

TABLE 2
Running time (seconds) on ablation study.

Alg. RL4LS-N-D RL4LS-A-D RL4LS-L-D RL4LS-S-D
Time (s) 2.11 2.26 2.39 2.18

Alg. RL4LS-N-L RL4LS-A-L RL4LS-L-L RL4LS-S-L
Time (s) 1.98 2.57 2.74 2.39

Alg. S1 + A1 S1 + A2 S2 + A1 S2 + A2

Time (s) 2.39 2.24 2.90 2.77

Alg. S1 + A1 S1 + A3 S3 + A1 S3 + A3

Time (s) 2.39 2.26 1.95 1.78

and D (L) represents the model is for the demand (lead time)
prediction. Consider the costs (Figure 3(a) and Figure 3(b)).
For the demand prediction, the model with LSTM performs
the best, which could be explained by the fact that LSTM
can make a more accurate prediction, and this information
could be used to decide the actions with the least costs. For
lead time prediction, however, using sampling outperforms
the others. We observe that LSTM and ARIMA do not work
for lead time prediction. The reason is that the lead time
is always affected by some unpredictable factors, such as
weather or traffic, which makes the prediction unreliable.
First four rows of Table 2 shows all variants are efficient.

(3) Ablation Study on State and Action Definitions (Real
Dataset). To evaluate the effectiveness of the state and action
definitions of RL4LS, separately and collectively, we replace
each of them with some alternative definitions, namely
those adopted in PG4LS [13] and QL4LS [5]. We denote
the state and action definitions of RL4LS (PG4LS, QL4LS)
by S1 and A1 (S2 and A2, S3 and A3). In this experiment,
we explore two groups of combinations. In group one, we
explore four combinations of S1, S2 and A1, A2. In group
two, we explore four combinations of S1, S3 and A1, A3,
Consider the effectiveness (Figure 3(c) and Figure 3(d)).
We observe that S1 + A1 (i.e., RL4LS) performs the best
in both groups while S2 + A2 (i.e., PG4LS) and S3 + A3

(i.e., QL4LS) perform the worst in each group, respectively.
For both groups, RL4LS has the least ordering and holding
costs, which dominate the total costs. This could be possibly
explained by that a state of RL4LS captures richer and more
relevant information of the inventory and the action orders
the materials timely and adequately. Consider the efficiency
(last four rows of Table 2). For group one, we observe that
S1 + A2 runs the fastest, which could be explained by that
(1) S1 is cheaper to compute than S2 and (2) compared with
A2, A1 needs to decide the quantity and choose the best
supplier, which will increase computation load. For group
two, we observe that RL4LS is not so efficient which could
be explained that S3 and A3 are both cheaper to compute.

(4) Case Study (Real Dataset). We choose two typical
materials. Material-I has a high unit shortage cost cs1 but
its disposal cost cd1

is low while Material-II does not cost
too much when shortage happens, i.e., cs2 is much smaller,
but discarding will incur a large punishment cd2

. These
two materials have the same fixed lifetime. The results are
presented in Figure 4. The blue lines of these two figures
represent the inventory change while the bars represent the
order quantity on the corresponding state. For Material-I,
maintaining a high inventory level is a good choice since
low inventory level sometimes may encounter the problem
of demand unmet. Thus, in Figure 4(a), we can see that
the inventory level will almost maintain at a level over
80% of the maximum capacity. The policy for Material-II

https://github.com/wangkaixin219/RL4LS
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Fig. 3. Results on ablation study.
tells another story in Figure 4(b). Since discarding means
a large punishment, the order quantity and the inventory
level maintain at a low level.
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Fig. 4. Results on real dataset (case study).

(5-7) Experiments on Synthetic Dataset. They can be found
in the technical report [24].

6 CONCLUSION

In this paper, we study a novel problem, namely LS-PMU.
We propose a RL-based algorithm RL4LS. Compared with
existing algorithm, our algorithm can intelligently choose a
supplier and decide an order quantity so as to minimize the
overall costs. Extensive experiments on real and synthetic
datasets demonstrate that RL4LS is effective and efficient.
It is worthy of noting that we do not consider a fill rate (fr),
i.e., the ratio of the satisfied demands to the total demands,
in our model. If the inventory has such a goal, e.g., fr ≥
95%, our solution would not guarantee to achieve it.
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