
Single-site Perishable Inventory Management
under Uncertainties: A Deep Reinforcement

Learning Approach (Technical Report)
Kaixin Wang, Cheng Long, Darrell Joshua Ong, Jie Zhang, and Xue-Ming Yuan

✦

APPENDIX A
PROOF OF THEOREM 1

Proof. We prove by constructing an instance with a material
with the maximum life time equal to one, i.e., L = 1, and
|S| suppliers over T periods. Since the maximum life time
of this material is only one, the materials that are not used
to meet the demands will be disposed at the end of each
period. Thus, the inventory level at the beginning of each
period will be zero, i.e., v(i) = 0 for all i ∈ [1, T]. Suppose
that the order arrives instantaneously, i.e., l(i, j) = 0 for all
i and j. Now we first consider the costs for a single period.
Then, we extend the results to multiple periods. For a period
i, there are two possible cases: (1) d(i) ≤ o(i), and (2) d(i) >
o(i).
Case 1 d(i) ≤ o(i). Since the ordering quantity is larger than
the demand, we need to pay the holding costs, disposal costs
and ordering costs in this time period. Define

g(x) = min
j∈S

{co(j) · x+ cb(j) · I(x)}, x ≥ 0. (1)

Then, the costs for time period i would be,

C(i) = Ch(i) + Co(i) + Cd(i)

≥ (ch + cd) · (o(i)− d(i)) + g(o(i))

= (ch + cd) · o(i) + g(o(i))− (ch + cd) · d(i).
(2)

Since the order arrives instantaneously, the offline optimal
solution would be o(i) = d(i), and we choose the supplier
that provides the least ordering costs with respect to o(i).
Thus, the objective is

C∗(i) = g(d(i)). (3)

• K. Wang, C. Long and J. Zhang are with the School of Computer Science
and Engineering, Nanyang Technological University, Singapore Email:
{kaixin.wang, c.long, zhangj}@ntu.edu.sg.

• D. J. Ong and X. Yuan are with Singapore Institute of Manufacturing
Technology, Singapore. Email: {darrell joshua ong, xmyuan}@simtech.a-
star.edu.sg.

• Corresponding Author: Cheng Long

Thus, the competitive ratio can be computed by

cr(i) = max
x∈X

obj(A(x))

obj(A∗(x))

≥ max
d(i)≥0

(ch + cd) · o(i)− (ch + cd) · d(i) + g(o(i))

g(d(i))

= lim
x→0+

(ch + cd) · o(i)− (ch + cd) · x+ g(o(i))

g(x)

=
(ch + cd) · o(i) + f(o(i))

f(0)
(4)

Case 2 o(i) < d(i). Since the ordering quantity is less than
the demand, the costs are composed by the ordering and
shortage costs,

C(i) = Co(i) + Cs(i)

≥ g(o(i)) + cs · (d(i)− o(i))

= min
j∈S

{(co(j)− cs) · o(i) + cb(j) · I(o(i))}+ cs · d(i),
(5)

If co(j) > cs for all j, then C(i) has the minimum when
o(i) = 0. That means that if all unit ordering costs provided
by different suppliers are larger than the shortage cost,
which are known before running the algorithm, then the
ordering policy for any algorithm which induces the mini-
mum costs will be o(i, j) = 0 for all supplier j, which is the
same as the offline optimal solution. Thus, the competitive
ratio would be exactly 1.

Another scenario is that the supplier s, which provides
the least C(i), satisfies that co(s) ≤ cs, then the offline
optimal solution would be o(i, s) = d(i), and o(i, j) = 0
for all suppliers j ̸= s. Then, the objective is

C∗(i) = g(d(i)). (6)

Thus, the competitive ratio can be computed by

cr(i) = max
x∈X

obj(A(x))

obj(A∗(x))

≥ max
d(i)≥0

g(o(i)) + cs · (d(i)− o(i))

g(d(i))

= lim
x→+∞

g(o(i)) + cs · (x− o(i))

g(x)

=
cs

min
j∈S

{co(j)}

(7)

Since the demand d(i) is not known in advance, thus the
competitive ratio for a single period is

cr(i) ≥ max

(
(ch + cd) · o(i) + f(o(i))

f(0)
,

cs
min
j∈S

{co(j)}

)
(8)

Then, for a planning task with T horizon, since each
period is similar, then the competitive ratio will be

cr(A) = max
x∈X

obj(A(x))

obj(A∗(x))

= max
d≥0

∑T
i=1 C(i)∑T
i=1 C

∗(i)

=

∑T
i=1 cr(i) · C∗(i)∑T

i=1 C
∗(i)

≥ min
i

cr(i).

(9)

Therefore, we conclude that the algorithm A cannot achieve
a competitive ratio better than mini cr(i).

APPENDIX B
OFFLINE OPTIMAL ALGORITHM

To evaluate an online algorithm A, it is important to know
the gap between the result returned by A and the result
returned by the optimal solution. Thus, we present an
optimal solution in which the demands and the lead time
are known in advance.

Lemma 1. Cd(i) = 0 for all i ∈ [1, T].

Proof. We prove it by contradiction. Assume that there is an
optimal solution S∗ returned by A∗ in which there exists a
period i such that Cd(i) > 0. We denote the quantity of the
materials being disposed in period i by m > 0. Since these
materials reaches their lifetime in period i, then they must
be ordered in the period i′ = i − (L − 1) and there exists
a supplier j satisfying o(i′, j) ≥ m. We propose another
solution S. For all periods except period i′, the ordering
policy remains the same as S∗ and for the period i′, we
order o(i′, j) = o∗(i′, j) − m from the same supplier j.
Since the ordering quantity in period i′ becomes less and the
inventory does not need to hold these m materials between
the period i′ + l(i′, j) and period i, the costs incurred by
solution S will be less than that of S∗, which is contradicted
by the assumption that S∗ is the optimal solution.

Since there is no costs coming from disposing in the
offline optimal solution, it reduces to general lot-sizing
problem with positive lead time. To solve the problem,
we first review some optimal conditions of order quantity
under the zero-lead-time setting, and then we choose the
suitable supplier by (1) satisfying the optimal conditions
of the order quantity and (2) considering the lead time
constraints.

Definition 1 (Block [1]). Let v(T +1) = 0. A block, denoted by
[j, k] (j ≤ k), represents a consecutive sequence of time periods
[j, k] if v(j) ∈ {0, V }, v(k + 1) ∈ {0, V } and 0 < v(i) < V
for all period i ∈ [j + 1, k] if any.

We extend the optimal conditions summarized in [1] to
our problems. The whole planning horizon under the opti-
mal solution can be divided into several blocks. Within each
block, there is at most one period with positive quantity of
the receiving materials. There are four types of the block,
determined by the values of inventory levels v(j) and v(k).
There are two useful observations of any block [j, k].

• If v(j) = 0 and the quantity of the receiving materials
a(i) > 0 for some i ∈ [j, k], then i = j.

• If v(k + 1) = V and the quantity of the receiving
materials a(i) > 0 for some i ∈ [j, k], then i = k;

We introduce some new notations to solve the offline
optimal LP-PMU problem.

Definition 2 (Order tuple). An order tuple, denoted by (i, j, q),
represents we order a quantity of q materials in period i from
supplier j.

Definition 3 (Partial solution). A feasible partial solu-
tion for a horizon of t periods, denoted by fp(t) =
{(i1, j1, q1), · · · , (ik, jk, qk)}, contains a list of ordering tuples.
The sequence of these tuples are in ascending order of the receiving
time, i.e., i1 + l(i1, j1) < i2 + l(i2, j2) < · · · < ik + l(ik, jk).
A feasible partial solution satisfies v(t+ 1) = 0.

Now we develop the offline optimal algorithm. The
algorithm considers the demands period by period. As-
sume that we have already had a feasible partial solution
fp(i−1) = {(i1, j1, q1), · · · , (ik, jk, qk)}. Now we consider
the demand d(i) of period i. There are three possible cases.
Case 1. We do not meet these demands and they are having
a shortage. Thus, the feasible partial solution fp(i) remains
the same as fp(i−1), and it satisfies that v(i + 1) = 0. The
additional costs will be

w(i) = cs · d(i). (10)

Case 2. The demand d(i) is met by an order other than
those in fp(i−1). Specifically, we denote the order which
meets d(i) by (ik+1, jk+1, d(i)), where it should satisfy
(1) ordering constraint ik+1 /∈ {i1, · · · , ik} and (2) lead
time constraint ik+1 + l(ik+1, jk+1) = i. Then the feasible
partial solution after covering the period i will be fp(i) =
{(i1, j1, q1), · · · , (ik, jk, qk), (ik+1, jk+1, d(i))}. Since the re-
ceiving materials just meet the demand, this feasible partial
solution also satisfies v(i+1) = 0. Thus, the additional costs
will be

w(i) = co(jk+1) · d(i) + cb(jk+1). (11)

Note that there might be several order tuples satisfying the
above two constraints, and each tuple will generate a new
feasible partial solution.
Case 3. The demand d(i) is met by the last order (ik, jk, qk)
in fp(i). This case should first satisfy the lifetime constraint
i− ik < L. To further make fp(i) a feasible partial solution,
we need to order additional d(i) materials when we place
the order in period ik so that v(i + 1) = 0. Therefore, the
last order would be (ik, jk, qk + d(i)). However, sometimes
we cannot order qk+d(i) materials because of the inventory
capacity V .

Consider the period i′ = ik + l(ik, jk). The inventory
level at the beginning of the period i′ is v(i′), and the

demand in that period is d(i′). Thus, the most order quantity
in period ik would be

Qk = a(i′) ≤ V + d(i′)− v(i′). (12)

Case 3.1. qk + d(i) ≤ Qk. Under this case, we can directly
order qk + d(i) in period ik from supplier jk. Thus, the
feasible partial solution after covering the period i will be
fp(i) = {(i1, j1, q1), · · · , (ik, jk, qk + d(i))}. The additional
costs would come from the ordering and holding these d(i)
materials,

w(i) = (co(jk) + (i− i′) · ch) · d(i). (13)

Case 3.2. qk + d(i) > Qk. Under this case, we can only
order Qk in period ik from supplier jk. Then, there will
remain d′(i) = qk + d(i) − Qk materials in period i unmet.
The remaining demand is met by another order, denoted
by (ik+1, jk+1, d

′(i)). Similar to the Case 2, this order
should satisfy (1) ordering constraint ik+1 /∈ {i1, · · · , ik}
and (2) lead time constraint ik+1 + l(ik+1, jk+1) = i.
And the feasible partial solution will be updated to
fp(i) = {(i1, j1, q1), · · · , (ik, jk, Qk), (ik+1, jk+1, d

′(i))}.
And the additional costs will come from (1) the costs w

(i)
1

of ordering and holding of (Qk − qk) materials and (2) the
costs w(i)

2 ordering of d′(i) materials,

w
(i)
1 = (co(jk) + (i− i′) · ch) · (Qk − qk)

w
(i)
2 = co(jk+1) · d′(i) + cb(jk+1).

(14)

Thus, w(i) = w
(i)
1 + w

(i)
2 .

Note that for Case 3.1 and Case 3.2, there is a change on
the inventory level at the beginning of the period i after we
have the feasible partial solution fp(i). For Case 3.1, v(i) =
d(i) while for Case 3.2, v(i) = Qk−qk = V +d(i′)−v(i′)−qk
at the beginning of period i, respectively. These values are
useful when we calculate the Qk′ (Eq. 12) for some other
periods later.

Above three cases contains all possible block divisions of
planning horizon. Thus, the offline optimal must lie in one
of the feasible partial solutions of fp(T). Thus, we calculate
the offline optimal by the following steps. Given an instance
of the offline LP-PMU problem, where it includes T periods
and the demands and lead time are known in advance, we
construct a graph G = (V,E). Each vertex represents a
feasible partial solution fp(i) (i ∈ [0, T]), where fp(0) is
the empty feasible partial solution. For each expansion from
fp(i) to fp(i+1) using the above cases, there is a weighted
direct arc e ∈ E with its weight we = w(i) from fp(i) to
fp(i+1). In addition, there is a sink vertex t. For the vertices
representing fp(T), they are all connected to a sink vertex t
with a weighted direct edge from fp(T) to t with its weight
equals 0. Thus, the offline LP-PMU problem can be solved
by finding the shortest path from fp(0) to t.
Time Complexity. For each feasible partial solution fp(i),
there are at most 2|S|+1 expansions. Therefore, in the graph
G, there are O((2S+1)T) vertices and O((2|S|+1)T) edges.
Since the running time of the shortest path by Dijkstra [2]
is O(E + V log V), the time complexity of running offline
LP-PMU problem would be O(T · (2|S|+1)T log(2|S|+1)).

APPENDIX C
PSEUDO-CODES OF RL4LS ALGORITHM

The pseudo-codes of RL4LS is presented in Algorithm 1.

Algorithm 1: RL4LS algorithm
Input: Demands d(i) and lead time l(i, j) for all i and j,

where they arrive in an online fashion.
Output: Plan o(i, j) for all i and j, total costs C.

1 C ← 0;
2 foreach i ∈ [1, T] do
3 si ← observe the inventory status as Eq. (11);
4 Take an action ai = [j∗, q∗] which satisfies Eq. (15);
5 Output o(i, j∗) = q∗ and o(i, j) = 0 for j ̸= j∗;
6 C(i)← total costs in the time period i;
7 C ← C + C(i);

8 return C;

APPENDIX D
ADDITIONAL EXPERIMENTAL SETUP

Model Training. The real dataset consists of the history data
from 2015 to 2020. We use the first five years for training and
the data of the last year for testing. The networks Q(s, a;ω)
and µ(s; θ) are both composed of a hidden layer and an
output layer. In both hidden layers, we use the tanh function
as the activation function with 64 neurons. In the output
layers, we use linear function and sigmoid function with |S|
neurons for Q and µ, respectively. For training, we set the
discount factor γ to 1, and use the Adam optimiser with
constant learning rate 10−4. We adopt ϵ-greedy process and
set ϵ = 0.1. Other parameters follow the default settings
in PyTorch. We train the networks for 20,000 iterations. The
hardware we use is a machine with Intel Core i9-10940X
CPU and a single Nvidia GeForce 2080Ti GPU.

Hyperparameter Setting. For the baseline algorithms, all
hyperparameters are set to be the same as those in existing
studies. For all algorithms, we regard each material as
an independent agent for each problem instance of size
|M | × |S|.

APPENDIX E
ADDITIONAL EXPERIMENTAL RESULTS

10 15 20 25 30 35 40 45 50 55 60
Problem Size

10

20

30

40

50

To
ta
l C

os
ts

RL4LS
IBFA
QL4LS
PG4LS
GA

(a) Total costs (×107)

10 15 20 25 30 35 40 45 50 55 60
Problem Size

100

101

102

103

Ru
nn

in
g
tim

e
(s
)

RL4LS
IBFA

QL4LS
PG4LS

GA

(b) Running time
Fig. 1. Results on synthetic dataset.
(5) Results on Synthetic Dataset. The results of the synthetic
datasets are present in Figure 1. Since the demands and
lead time generated in [3] follow a uniform distribution,
we use the same distribution to sample the demand and
lead time for the predictions in the state definition. Con-
sider the effectiveness, our proposed algorithm outperforms

other algorithms under most cases. GA has the second best
results when the problem size is small (i.e., problem size
< 20 × 20) since GA could generate a large search space
due to the chromosome structure, and it is easy to extract a
good solution. However, when the problem size increases, it
becomes harder to search the whole solution space, and as
a result, the performance becomes worse than the RL-based
algorithms. Compared with other RL-based algorithms, our
algorithm is also competitive since the our proposed state
definition captures more information than that of QL4LS
and PG4LS. As for the running time, GA and IBFA need
a large amount of time by trial-and-error while RL-based
algorithms are efficient as the problem size becomes larger.
QL4LS runs the fastest, which could be explained by the fact
that the state is cheaper to compute.

10 15 20 25 30 35 40 45 50 55 60
Problem Size

10

20

30

40

50

To
ta
l C

os
ts

RL4LS
IBFA
QL4LS
PG4LS
GA

(a) Total costs (×107) on zero
lead time

10 15 20 25 30 35 40 45 50 55 60
Problem Size

10

20

30

40

50

To
ta
l C

os
ts

RL4LS
IBFA
QL4LS
PG4LS
GA

(b) Total costs (×107) on con-
stant demand

Fig. 2. Results on zero lead time and constant demand.

(6) Results on Zero Lead Time and Fixed Demand (Syn-
thetic Datasets). In some previous work, there is no lead
time (orders arrive immediately) or the demands are con-
sidered as deterministic. We also do such studies to test
our algorithms. The results on zero lead time are presented
in Figure 2(a). We can see that our algorithm also has the
lowest total costs among all algorithms, and the value of
the total costs in this setting is smaller than that of origin
problem. This is because when the orders can arrive imme-
diately, some unmet demands result from the shortage could
be met by using the arriving materials, in which the shortage
costs become smaller. As for the deterministic demands,
the results are shown in Figure 2(b). Our algorithm also
performs better than other algorithms at most time.

50 100 150 200 250 300
T

106

107

108

Co
st
s

Ordering
Holding

Disposal
Shortage

Total

(a) Costs on varying T (RL4LS)

50 100 150 200 250 300
T

100

101

102

103

Ru
nn

in
g
tim

e
(s
)

RL4LS
IBFA

QL4LS
PG4LS

GA

(b) Running time on varying T

Fig. 3. Results on varying the maximum time period T .

(7) Results on varying the maximum time period T . We
study the effects of the maximum time period T by varying
its value from the range {50, 100, 150, 200, 250, 300}. We
choose the problem size to be 10×10. Among all algorithms,
RL4LS achieves the best performance, i.e., the least cost. Fig-
ure 3(a) decomposes the total costs of RL4LS into different
categories. We can see that all costs increase as the maximum
time period T increases. Among the costs, ordering cost
takes up to 75%-85% of the total cost, which shows a similar
trend as that on the real dataset. Figure 3(b) shows the

results of the running time of different algorithms. Three
RL-based algorithms run faster than the nature-inspired
heuristics. Specifically, when T reaches 300, RL4LS runs in
3.8 seconds, showing its excellent efficiency.

REFERENCES

[1] A. Atamtürk and S. Küçükyavuz, “An o(n2) algorithm for lot sizing
with inventory bounds and fixed costs,” Operations Research Letters,
vol. 36, no. 3, pp. 297–299, 2008.

[2] E. W. Dijkstra et al., “A note on two problems in connexion with
graphs,” Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[3] H. Soleimani, M. Seyyed-Esfahani, and M. A. Shirazi, “Designing
and planning a multi-echelon multi-period multi-product closed-
loop supply chain utilizing genetic algorithm,” The International
Journal of Advanced Manufacturing Technology, vol. 68, no. 1-4, pp.
917–931, 2013.

	Appendix A: Proof of Theorem 1
	Appendix B: Offline Optimal Algorithm
	Appendix C: Pseudo-codes of RL4LS Algorithm
	Appendix D: Additional Experimental Setup
	Appendix E: Additional Experimental Results
	References

